The horticulture of native plants sometimes gets tangled up in traditional horticulture or agriculture, especially as it relates to the understanding of soils and soil fertility. The gardening dogma has been to extol the wonders of rich, fertile soil, the use of compost and commercial fertilizers that promise faster, bigger, and better. Although rich soil may be beneficial for your vegetable garden, agricultural crops, and some perennials, this is not the case for growing most native plant species.

There are three types of customers that commonly visit our nursery. One type laments their soil is too dry and sandy and plan to haul the soil away and bring in topsoil. The second type has clay soils and complains it is so compacted they cannot do a thing with it and plan to haul it away and bring in topsoil. The third boast that they have been composting for years and have created very rich soils. Unlike the story of *Goldilocks and the Three Bears* - none of these customers have it “just right”.

Soil is a precious resource. As an environmentally oriented native plant gardener, hauling soil away and replacing it with “top soil” is an option that should almost never be considered. The one possible exception is if the soil is contaminated with heavy metals or other pollutants and even in many of these situations removing the soil is ill advised.

What is commercial topsoil anyway? At one time it commonly was Michigan peatmuck soil mined from drained wetlands. This is still available, but is becoming increasingly more expensive and difficult to find. Remember, mining this material cannot be done sustainably and results in the destruction of wetlands. Today topsoil is commonly made up of sand with a lot of organic matter added to it to create a dark and rich (manufactured) soil. Regardless of the source, adding topsoil is generally not necessary and can lead to unanticipated problems such as the introduction of weeds through seeds, rhizomes or other propagules. In addition, laying one soil type upon another without mixing the layers can result in drainage problems. Finally, the extra fertility will not be an advantage, but a hindrance.
President’s Note…

As I write this in my office in the College of Pharmacy at Ferris State University, the sun is bright. Spring seems just around the corner. For those of you who don’t know me, I have been a member of WAM since the early 1990’s and since about 2003 have been involved with the Glassen Grant program. I’m a Professor of Pharmacognosy with life-long interests in wildflowers, toxic plants and botanical/natural product chemistry. I joined Ferris in 1975 and have been in charge of the College of Pharmacy Kazerovskis Medicinal Greenhouse and Gardens since being hired. One garden in particular, our Native American Medicinal Plant Collection, contains numerous native Michigan wildflowers, shrubs, and trees.

WAM has continued to prosper due to the dedication, energy and talents of its officers. I have been mindful of the many people who presented the very best role models to me as I immersed myself in our organization. Esther Durnwald, who recently completed her term as president is a shining example. An excellent organizer and administrator, she has strengthened our organization during what may quite possibly be the worst economic times Michigan has faced. Even WAM has experienced it as our support from Glassen continues to be reduced due to the market’s slow recovery. We all owe Esther our deepest gratitude for her leadership. Also to be thanked is Suzie Knoll who has stepped down to assume a new position in Mexico. To be remembered for her great advice is Nancy Small.

I can’t but trumpet the success of our annual conference. I am confident that it will rank as one of our best. The speakers were excellent, their topics reflected your input and desires, and the theme ‘Growing Communities’ stressed the cooperation and connections we observe in our native plant communities which may be applicable to success in our human communities as well.

What can you expect from me as your WAM President? Hard work for an organization I have grown to respect and enjoy, dedication to its mission and to you its members, and an expansion of the excellence WAM represents in our state and Great Lakes Region. Tourism is one of the top industries in our state, which has initiated the ‘Travel Michigan’ and ‘Pure Michigan’ advertising campaigns around the country. What would a tourist find if the wild flowers we conserve and educate our youth about, or other flora and fauna we discuss in our meetings and newsletters were not here? We collectively, as WAM, do have a very real impact on our state’s economy and its recovery from the current recession. Additionally, our efforts have tremendous effects on our population in terms of relaxation, pride, and joy as they visit the many beautiful spots in their state. Make a belated but important New Year’s resolution to become more active in your WAM! Everyone in the state will be better off for your efforts. Feel free to contact me whenever you wish. My email address is: krugerr@ferris.edu.

Robert Kreuger, PhD, President

Executive Board
Robert Krueger, PhD., President/WAM Grant Chairman
Chad Hughson, 1st Vice President/Website Coordinator
Trish Hacker-Hennig, 2nd Vice President
Susan Baldyga-Grubb, Secretary
Jean Weirich, Treasurer/Membership

Board of Directors
Ray Rustem, Education Coordinator
Cheryl Tolley, Conference Chairman
Maryann Whitman, WAM Grant Coordinator
Darwyn Heme, Member at large
Tom Small, Member at large
Kathy Prelesnik, Member at large

Conference Exhibit/Vendor Committee
Marvin Cooley
Joyce Janicki
Kathryn Lund Johnson

Past President
Esther Durnwald

Wildflowers is the newsletter published quarterly by the Wildflower Association of Michigan. All views are the opinion of the authors and may not be the expressed position of WAM. Newsletter content may be reproduced for educational purposes as long as the source is credited. Artwork may only be reproduced as part of a specific article. Photos or artwork that carry an individual copyright are the property of the authors and may not be reproduced without their permission. Please contact the editor if in doubt about use rights. Manuscripts, artwork, and photos are welcome however; unsolicited work may not be used. WAM does not pay for articles or photos. Contact the editors for submission guidelines. Upcoming themes are prairies, water and trees. WAM is a nonprofit 501(c)(3) organization. A portion of your membership pays for your subscription. Donations to WAM are tax deductible as allowed by law. Please send donations and address changes to Jean Weirich, 3947 St. Joseph Hwy, Grand Ledge, MI 48837.

Wildflowers Editor:
Kathy Prelesnik: bottletreegirl@yahoo.com

www.wildflowersmich.org

Layout and design: J-Ad Graphics, Hastings, MI
© Wildflowers 2010
Soil is much more than the sum of its parts. It is made up of inorganic minerals (sand, silt, and clay), decaying organic matter, plus an abundance of living things including fungi, bacteria, insects, roots, etc. If you think of the soil as a recycling factory, the mineral component would be the factory building, the organic matter (dead stuff) would be the product being recycled, and the microorganisms and other animals, the workers. Under natural conditions the rate of accumulation of organic matter in the soil is generally in equilibrium with its rate of breakdown. This is important since organic matter ties up nutrients in a form unavailable to plants and releases the nutrients only when the organic matter is decomposed. Under natural conditions soils sometimes do accumulate organic matter, but this takes hundreds if not thousands of years. If the organic matter is being broken down faster than it is being replenished the accelerated breakdown will result in a decrease in water holding capacity and soils become more prone to compaction. In addition, there will be a short-term spike in nutrient release. Plants will respond by growing vigorously. Intuitively this may not seem like a bad thing but the plants may grow faster than desired, attaining an unanticipated size and requiring a lot of pruning. Having the right microbial workers working at the right speed maintaining this equilibrium is important.

Symbiotic microorganisms coexist with plants in a manner that benefits both plant and microbe. Mycorrhizal fungi, for example, enhance uptake of soil nutrients and water and are found associated with most terrestrial plants. In exchange the plant provides photosynthates (mostly sugar and starches) to the fungi. Rhizobium spp. and Frankia spp. are two types of soil microbes that fix atmospheric nitrogen for certain species on the most infertile sites. These organisms work for free and deliver the nitrogen directly to the plant. Interestingly, the presence of these types of soil organisms is inversely correlated to the amount of soil nitrogen. Native species have co-evolved with these soil micro-organisms to tolerate soils of moderate to low fertility.

While native plants, like most other plants, respond to greater soil fertility, weedy species in general can take better advantage of increased nutrients. Low soil fertility will generally give native species a competitive advantage over the high feeding, non-native weeds. Many beloved native plants such as lupine, bush clovers, harebell among others are only able to survive when plant competition is minimized by low soil fertility.

Soil testing and pH

I know I am in the minority, but I find traditional soil testing for native plantings completely unhelpful. These tests provide valuable information for agriculture and some types of horticulture but not for natives. A great deal is made of soil pH and indeed it is an important soil parameter. The fact is there is very little you can do, long term, to alter soil pH. Turning a couple of shovelfuls of soil over will help you determine if the soil leans to the sandy or clay side of the continuum. The degree and depth of soil compaction will also be obvious. Don’t forget to also look at the surrounding vegetation, which will reveal useful information about the soils and which natives are best suited to the site.

My advice is, “don’t obsess over soil fertility” - after all, you are growing native plants not field corn. Embrace the soil you have and work with it by choosing plants that will grow under the conditions you have. You may initially need to add some low nitrogen/high carbon organic matter to get things going. There is a time and a place for soil amendments, but it is important to be mindful that all amendments are temporary. They should be used as an interim step toward establishing vegetation that is not reliant on regular soil amendments. The good news is that all you need to do is establish native plants. Time will take care of the soil. This will prove to be the simplest, lowest cost, and most environmentally sensitive solution.

© Bill Schneider, Owner
Wildtype Native Plant Nursery
Ask anyone on the street if earthworms are good for ecosystems and you will undoubtedly receive a resounding “YES!” When asked why, they may say something like “earthworms mix and aerate the soil.” It is a basic ecological concept that we may have learned as early as kindergarten. However, recent research on invasion of these seemingly benevolent creatures into previously worm-free hardwood forests of the Great Lakes region has seriously challenged that belief.

Researchers at the University of Minnesota, and elsewhere, have documented dramatic changes in native hardwood forest ecosystems when exotic earthworms invade. These changes include losses of native understory plant species and tree seedlings, changes in soil structure and declines in nutrient availability. There is also fascinating evidence emerging that the changes caused by exotic earthworms may lead to a cascade of other changes in the forest that affect small mammal, bird and amphibian populations, increase the impacts of herbivores like white-tailed deer, and facilitate invasions of other exotic species such as European slugs and exotic plants like buckthorn and garlic mustard. These results suggest that exotic earthworms may pose a grave threat to the biodiversity and long term stability of hardwood forest ecosystems in the region. Much more research is needed.

Native earthworm species have never been documented in most of the Great Lakes region of North America. Any native North American species of earthworms (in the family Megascolecidae) that may have been living in the region were extirpated when glacial ice sheets covered the Upper Midwest 11,000 to 14,000 years ago, leaving the glaciated areas of North America worm free. Natural recolonization by earthworms happens very slowly, with earthworms spreading less than 1 mile in 100 years. So, forests of the Great Lakes Region developed in the complete absence of earthworms. For thousands of years, no earthworms existed in this region until European settlers began arriving around the mid 1800’s.

All of the earthworms you have come to know and love in the Great Lakes region are exotic, most are European (in the family Lumbricidae) and initially arrived with European settlement. But they continue to be transported, intentionally and unintentionally, through a range of human activities such as the dumping of unused fishing bait, transport of compost & mulch, and anything else that moves soil.

Lacking a powerful detrivore such as earthworms, decomposition of the annual leaf litter in earthworm-free hardwood forests is controlled by fungi and bacteria. In this situation, decomposition is slower than accumulation of new litter and the result is the formation of a thick, spongy forest floor, often called a “duff layer”. The duff layer can be up to 10 cm (4 or 5 inches) thick in very rich sites dominated by sugar maple and basswood trees. Dozens of understory plant species are native residents of the forest floor including the much loved trilliums and other spring flowers. The duff layer provides protection from predation and extremes in temperature and moisture to the seeds of understory plant species, many of which take up to two years to fully germinate and begin to grow. These understory plants and tree seedlings root almost exclusively in the thick forest floor since this is where most of the available nutrients are found.

Research is beginning to emerge that suggests that the invasion of earthworms leads to a cascade of changes in hardwood forest ecosystems. With the loss of the forest floor, many animals such as ground nesting birds, small mammals, amphibians & reptiles, and insects & spiders lose their primary habitat and many food sources. While earthworms can be a very good food source for many of these animals, the loss of cover that the forest floor used to provide is now gone. With the disappearance of the forest floor, so go many of the insects and fungi that provided high quality food for the forest’s small animals. So, it’s a mixed bag.

White-tailed deer densities are much higher in modern hardwood forests than they were a century ago, and research has shown that this can contribute to lack of regeneration of herbaceous understory species including many tree species. In addition, research shows that the combined effects of deer browsing and earthworm invasion can have an even larger effect than either one alone, leading to even more severe impacts on understory plants and tree seedlings.

While earthworms have often been shown to have positive effects on soil structure and fertility in agricultural and garden ecosystems, these very same creatures can have very different effects in previously earthworm-free hardwood forests. When earthworms invade our native forests, they change some of the important underlying processes that support the health and diversity of forest plants and animals.

~ Continued on page 5 ~
Different plant species respond to earthworm invasions differently. Some native plants appear to be very sensitive, so much so, that they can rapidly disappear when earthworms invade a forest.

Some examples of these plants include:

<table>
<thead>
<tr>
<th>Life Form</th>
<th>Latin (scientific) name</th>
<th>Common Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Herbaceous plants</td>
<td>Aralia nudicaulis</td>
<td>Wild Sarsaparilla</td>
</tr>
<tr>
<td></td>
<td>Aralia racemosa</td>
<td>Spikenard</td>
</tr>
<tr>
<td></td>
<td>Streptopus roseus</td>
<td>Twisted Stalk</td>
</tr>
<tr>
<td></td>
<td>Uvularia sessilifolia</td>
<td>Wild Oats</td>
</tr>
<tr>
<td></td>
<td>Uvularia grandiflora</td>
<td>Large-flowered Bellwort</td>
</tr>
<tr>
<td></td>
<td>Polygonatum pubescens or</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Polygonatum commutatum</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Aster macrophyllus</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hepatica americana</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trientalis borealis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thalictrum dioicum</td>
<td></td>
</tr>
<tr>
<td>Ferns - Fern Allies</td>
<td>Lycopodium obscurum</td>
<td>Round-branched Ground-Pine</td>
</tr>
<tr>
<td></td>
<td>Dryopteris species</td>
<td>Shield-Fern</td>
</tr>
<tr>
<td>Tree Seedlings</td>
<td>Acer saccharum</td>
<td>Sugar Maple</td>
</tr>
<tr>
<td></td>
<td>Acer rubrum</td>
<td>Red Maple</td>
</tr>
<tr>
<td></td>
<td>Ostrya virginiana</td>
<td>Ironwood</td>
</tr>
<tr>
<td></td>
<td>Quercus rubra</td>
<td>Red Oak</td>
</tr>
<tr>
<td></td>
<td>Tilia americana</td>
<td>Basswood / Linden</td>
</tr>
<tr>
<td></td>
<td>Amelanchier species</td>
<td>Serviceberry</td>
</tr>
</tbody>
</table>

In contrast, there are a few native plants species that do very well in the wake of earthworm invasions. Such as:

<table>
<thead>
<tr>
<th>Life Form</th>
<th>Latin (scientific) name</th>
<th>Common Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Herbaceous plants</td>
<td>Arisaema triphyllum</td>
<td>Jack-in-the-pulpit</td>
</tr>
<tr>
<td></td>
<td>Smilacina racemosa</td>
<td>False Solomon’s Seal</td>
</tr>
<tr>
<td>Grass-like plants</td>
<td>Carex pensylvanica</td>
<td>Pennsylvania Sedge</td>
</tr>
<tr>
<td>Tree Seedlings</td>
<td>Fraxinus species</td>
<td>Ash</td>
</tr>
</tbody>
</table>

The reasons for the different responses by different plant species to earthworm invasion is not completely clear, but evidence suggests that several other factors contribute to the affects we see following earthworm invasion including:

- changes in mycorrhizal fungi communities
- the impact of deer herbivory may increase after earthworms invade
- secondary compounds that may protect plant root changes in the seedbed conditions
- changes in light levels on the forest floor
- other exotic species may be facilitated by earthworms
- For more information go to: http://www.nrr.i.umn.edu/WORMS/default.htm

There is a soil foodweb. It is the set of organisms that work underground to help plants grow. There are billions of organisms that make up the soil foodweb, including fungi, protozoa, nematodes, arthropods and earthworms. Each organism plays an important role in keeping the soil healthy for all living things.

Used with permission:
CM Hale, *Worm Watch*
The Dirt on Soil

I can still remember back to my undergraduate days at Michigan State University and the particular feeling of disinterest that surrounded attending soil science classes. While intuitively we all realize the critical nature that soil plays in the foundation of all terrestrial ecosystems, the traditional treatment of soil science was generally lifeless. I could not wait to get this dry subject done with and move on to all the plants, insects and animals that really interested me.

For most of the next ten years my ideas of soil changed very little. Once I became a grower of native plants, I began to get a glimpse at the diversity and dynamics of the soil community. I was introduced to mycorrhizal fungi and bacterial inoculums, but even then NPK (nitrogen, phosphorus, potassium) was purely chemical and fertilization was more about numbers and less about biology. More and more I realized that all soil is not the same, and that after soil disturbance, time was needed to restore some of the site’s productivity. Then I read Teaming with Microbes, by Jeff Lowenfels and Wayne Lewis, Timber Press 2006, Portland, OR.

In the first half of the book I was introduced to the concept of the soil food web, an idea not at all foreign to anyone that has studied ecosystems and predator/prey relationships. Yet, because most of the organisms that drive the soil nutrient cycles are too small for the human eye to see, it is easy for us to ignore them or consider them unimportant. The use of electron microscopes leads the authors to remind us that, at extreme magnification, everything has teeth! Plants run the soil system but, they are far from the only player in this drama. In the chapter devoted to classic soil science the authors begin to tie in the effects that biological organisms have on the physical formation and chemical characteristics that different soils possess, something that I wish had been stressed decades earlier.

I enjoyed the descriptions and interactions provided for the cast of characters that make up healthy soil; bacteria, fungi and algae, slime molds, protozoa, nematodes, arthropods, earthworms, gastropods and vertebrates. Too often even veteran gardeners look on members of these groups primarily as pests, yet the authors show many beneficial interactions within and between all of them. The expanded soil food web helps to explain the critical role that biology has in the way that plants and organisms work in the soil to cycle nutrients. As in more familiar ecosystems, when one or more species are lacking, the entire system becomes unstable, allowing less desirable organisms to gain the upper hand.

In the second half of the book Lowenfels and Lewis cast the soil food web players into the various plant communities, which helped me understand that by encouraging these organisms in different ways, gardeners can positively influence soil pH, nitrogen, sulfur, and carbon cycling. The book reminds us all of the disadvantages of relying on chemical salt fertilizers. When chemical salts are used they desiccate organisms, irritate earthworms, and increase nutrient leaching by destroy the natural mechanisms that keep soil fertility right where it is needed most - next to the roots (the rhizosphere).

The book’s primary focus is on the creation and use of actively brewed compost teas, as well as traditional mulches and compost. The authors stress the use of biologically active materials to inoculate, support, and improve soil biology to the benefit of gardeners and plants. The compost tea, a new trick for some gardeners, is explained in detail and promoted as an important new addition to the sustainable gardener’s bag of tricks. The brewing process they outline can easily be adapted to any scale garden.

Lowenfels and Lewis synthesize the science of food web biology into nineteen rules that I found myself referring to throughout the book. They make a strong case for the link between soil organisms, pH, the form of nitrogen available, and plant selection and succession. By reflecting on these simple statements gardeners can adjust their soil management practices to encourage the soil community that best supports the plants they want to grow.

This book is a quick read at 182 pages, but will get you thinking about the fascinating world under your feet. I recommend it to any curious gardeners looking to improve their organic soil management practices and anyone who like me, was turned off by the traditional treatment of soil science.

Stephan Keto, Landscape Supervisor
Western Michigan University
The Beauties of Spring

This is the time of the vernal equinox, when hope for spring weather truly arrives. And this is the time when the woodland flowers truly shine. So, what are the stars of the woodland garden? Some of the more interesting ones are the ephemerals, shining for brief moments of beauty and glory, and then disappearing until the next season.

Two of the first to appear and the shortest-lived are Dutchman’s breeches, Dicentra cucullaria, and squirrel-corn, Dicentra canadensis, members of the bleeding heart family. These two are must-haves with their interesting blooms and feathery, blue-green fern-like leaves. Unless they are blooming, it is virtually impossible to tell them apart by the leaves alone. True to their name, the Dutchman’s breeches have two upward-pointing outward, balloon-like parts with yellow tips, giving them a pantaloons shape. Squirrel corn flowers are rounded at the base and somewhat resemble kernels of corn. Both bloom in April, with the leaves dying back just a month later. The squirrel corn blossoms a week later than the Dutchman’s breeches, so plant them together to get a longer bloom time in that particular area of the garden. These plants often are seen in the wild growing around tree roots. Because they go dormant so soon after blossoming, their nutrient needs are less. Good companion plants are ferns, bloodroot, and wild ginger.

The spring beauties, Claytonia virginica, with narrow leaves and broad-leaved Clatonia caroliniana are wonderful in the garden because their blossoms appear so early. The narrow-leaved variety which can bloom as early as March until May, has five white petals with pink veins and a yellow center. It is a low-growing, somewhat delicate-looking plant and is best when growing in masses. It can only be grown in the southern part of the Lower Peninsula. The broad-leaved type grows only in the northern part of the state, and because of its more northern latitude, blooms a little later. It has pink blossoms with more pronounced veins. Both species die back when the leaves of the forest appear. Good companion plants are hepatica, wild ginger, bloodroot, trillium, rue anemone, and foam-flower.

Another plant welcoming spring is bloodroot, Sanguinaria canadensis. In April its striking, snow-white blossoms, with eight to twelve petals, appear on a single stalk. Partially enclosed by the still-opening leaf, they present a very dramatic appearance. The flowers are short-lived, blooming from one to five days, depending on weather and temperatures. They close in cold weather. The leaves are most interesting with their oval, notched shape and are attractive in themselves, sometimes becoming up to ten inches across and lasting well into summer.

When the rhizomes and stems are cut or broken, they release a red sap, which native peoples used as both a poison and medicinally, albeit carefully. After blooming, torpedo-shaped seed pods develop that last into mid-summer.

William Cullina in his book, Wildflowers, describes a very interesting symbiotic relationship between bloodroot and ants. The seeds are quite large and have a growth on them that resembles a small, white caterpillar. Ants discover the seeds lying on the ground, carry them off to their nests, and store them where they are safe from other animals, such as birds. After the “caterpillars” are eaten, the seeds remain. This results in new plants growing some distance from the parent. Because the leaves last longer, plant bloodroot with Dutchman’s breeches and squirrel corn. Rue anemone, bellwort, Jacob’s ladder, Virginia bluebells, and lady fern are also good companions. The simple, elegant beauty of the flowers and the interesting, long-lasting leaves make them welcome in any garden.

The undisputed queen of the woodland garden is, of course, the trillium, Trillium grandiflorum, with its gorgeous flower of three white, triangular petals and three smaller, green sepals in which is nestled the lovely yellow center. All of this rises above three leaves, somewhat ovate in shape, and spaced equally distant from one another, forming a triangular aspect. In many places, especially further north, they are numerous, and to see the forest floor carpeted with these blooms is truly wondrous sight.

Forty-two species of trillium are native to North America. The bloom period ranges from April to June, depending on latitude, and the flowers may turn pink with age. Trillium is more common in the northern parts of our state and decrease in numbers in Ohio, Indiana, and Illinois. In Michigan the Trillium grandiflorum is a protected wildflower and may not be removed or picked in the wild. Buy plants only from reputable dealers.

The trilliums are extremely long-lived and easy to grow. Clusters of them are striking, and are attractive planted beneath spring-blooming shrubs. Good companion plants are ferns, Virginia bluebells, and wild geraniums. The Trillium grandiflorum is a must-have in any Michigan woodland garden.

Even though the flowering time of these plants is brief, they are well worth having in the garden as the true harbingers of spring. As Lady Bird Johnson once said, “Where flowers bloom, so does hope.”

Judy Webber

Information from; Growing and Propagating Wildflowers, William Cullina, Landscaping with Native Plants of Michigan Lynn Steiner, Trilliums by Frederick and Roberta Case, Michigan Wildflowers by Harry Lund.
When Cheryl Tolley, a good friend of mine, asked if I wanted to spend part of my spring break at a wildflower conference a mile from my apartment, how could I refuse? Because my past experience did not include the “native plant” talk that is actively circulating today, I did not know what to expect.

It seems to me that the native plant movement is partially an effort to “undo” what past generations destroyed. While the Native Americans lived off of the land’s resources and treated everything with respect and reverence, Europeans had a much different view of the land. Land was to be owned and managed in a way that provided them with adequate food for their families and potential buyers. Management practices included stripping down acres of forestland and leveling it to cultivate crops. This process destroyed many habitats and complex ecosystems. Roughly two hundred years later, we have realized the mistake. Now, in an effort to restore areas back to the way they were, many devout organizations, businesses, and movements have sprung up across the nation, including in Michigan.

Do not misunderstand me. I believe, as many of you may agree, that this is the right thing to do. We cannot simply sit back and watch people slowly strip away the few remaining wild areas we still have. Rescuing plants, trying to change housing development laws, and planting acres of native plants is a vital step in the right direction.

Education is key in getting people to hop on the native plant bandwagon. That is why a gathering such as the WAM conference in March is such a great way to engage many different people regarding the concept of native plants and landscape restoration. I learned a lot at this conference. As I said before, I did not know what to expect.

One of my favorite sessions was lead by Dawn Vezina with the Organization for Bat Conservation. She talked about the benefits of inviting native bats into our yard. Learning a little bit about a bat’s habitat and diet, I was able to see how native bats, such as the big brown bat (actually only about 3-4” long!), could help keep invasive insect populations down and help fertilize gardens with their guano (fecal matter). Big brown bats eat June and cucumber beetles, moths, and mosquitoes. Their guano has high concentrations of nitrates, which are huge growth-boosters for plants in the garden.

Another session I really enjoyed was given by Lisa Brush with the Stewardship Network. She emphasized ways to communicate with the different people we meet and how to explain the need for native plants. She suggested listening to what other people are concerned about. For instance, if a new retention pond was recently built, and people complain that it is not safe because children might drown in it, listening to their concerns will show that we are not just trying to push our belief that retention ponds are necessary, but that we are trying to see where the other person is coming from. She also mentioned that most people have a cause that they are trying to work for, whether it is poverty, hunger, or native plants. If we only emphasize how crucial our issue is, it can be offensive. Instead, we need to point out what we have in common- the fact that we are all trying to do the world good – but in different areas.

After attending the conference, I have come to the conclusion that this has been one of the most beneficial and informative venues I have come upon to learn about native plants. Now, I am better equipped to inform my co-workers, fellow students, and even my family about how and why native plants are an essential part in coming closer to achieving the goal of restoring areas to the way they were intended to be.

Brenda Landhuis
Brenda is a junior at MSU in Landscape Design.

Photo by Kathy Lund-Johnson
FROM SEED TO THRIVING BUSINESS

The seed for Sandhill Farm was planted when I became a member of the Wildflower Association of Michigan in 1986. One of WAM’s founding Mothers, Kim Herman, was my inspiration; she nurtured and encouraged my interest. When I moved to my current property in 1992, it was basically old farm fields that had not been in active agriculture for a number of years, with adjacent woodlots and wetlands. Kim suggested a plant inventory of the property. Gerald Wilhelm, from Conservation Design Forum, spent two days with me and Kim inventorying the 200+ acres. We were amazed and delighted to learn that the property had a Floristic Quality Index of 77.76 with 333 native species. Recognizing the potential from what was already there, Kim, along with Harry and Elin Doehne, motivated me to start my own native plant business. The seed had germinated.

The intense development in the Grand Rapids area during the 1990’s gave me many opportunities to increase the number and genetic diversity of the existing plants through conducting plant rescues. All of the plants that were rescued were planted out in the woods here to continue growing. Some of the plants I rescued included unusual species like red trillium, Cimicifuga and starry Solomon’s seal. Many of these species have disappeared in the Grand Rapids area due to development pressure.

Craig Elston, (a long time member of WAM and director of the Hudsonville Nature Center) gave me my first opportunity to actually sell plants at the Gillette Nature Center plant sale. This sale was always held on Mother’s Day weekend and was called the Trillium Festival. Trillium is one of the species I sell, so it was a natural fit. Since that time the deer have eaten most of the trillium there and the sale has changed its trillium theme.

Since that first plant sale, my business has grown along with the native plants. The busiest months for sales are April, and May into June. Many plant orders come from landscape designers and architects, and other people involved in commercial plantings. My business is basically wholesale, and I prepare many good-sized plant orders in the spring as well as selling at plant sales. It seems there aren’t enough hours in the day until about July!

Although the focus of Sandhill Farm is primarily herbaceous woodland species and ferns, I had the opportunity to collect native grass seed on the Newaygo prairie and planted 25 acres of former corn field to big blue stem, Indian, little blue and switch grasses. In addition to twenty-seven woodland species and nine ferns, I have grasses and some woodland edge and sunny species available. Most of those were collected on plant rescues. I found it difficult to leave any behind. Even some trees found their way here. One result of all the natives on my property is incredible bird-watching. I have seen northern shrikes, meadowlarks, numerous hawk species, owls, warblers and other birds.

Since I work full time as a professional gardener in residential gardens, my main area of interest is helping homeowners increase the number of natives they are planting in their gardens and teaching them about the benefits native plants bring. I have done many classes for Frederik Meijer Gardens, master gardeners and garden clubs. I also offer tours of Sandhill Farm for those who want to see the plants in their native habitat or how they can be incorporated into an existing garden.

Cheryl S. Tolley, Owner
Sandhill Farm
WAM is pleased to announce that the following organizations received grants for their projects involving the use of native plants. We encourage schools and other organizations to apply for grants in 2010.

Friends of White Pine Trail
Belmont, MI
Gretchen Zuiderveen, Coordinator

Baldwin Elementary School
Rochester, MI
Patty Godin, PTA Chair

Allen Elementary Parent Council
Ann Arbor, MI
Joan Brush, Project Coordinator

Buhr Park, Childrens Wet Meadow
Ann Arbor, MI
Mark Charles, Coordinato

Huron Chapter Master Gardener Assoc
Bad Axe, MI
Carol Holtrop, President

McGregor Elementary School
Rochester, MI
Susan Gerrits, PTA Board Member

Hampton Elementary School
Rochester Hills, MI
Ruth Seyborn/Lynn Olszewski, Student Council Advisors

Millpond Waterfront Garden
Clarkston, MI
James Brueck/Lola Koch, Co-chairs

Mattawan Later Elementary School
Mattawan, MI
Michele VanAllen, Coordinator

West Middle School
Rochester Hills, MI
Elizabeth Witten, Coordinator

The Roeper School
Bloomfield Hills, MI
Susan Guenther, Committee Chair

University Hills Elem. School
Rochester Hills, MI
Jennifer O'Neil Green, Coordinator

WAM ANNUAL MEETING REPORT

Esther Durnwald presided over her last meeting as president of the WAM board. Here are the highlights of that meeting. Jean Weirich reported a balance of $12,793.17 in the association account at the end of 2009. The conference is a self sustaining event, although funds for WAM grants have fallen. The support of member donations is a vital component for the success of this important program.

There was discussion regarding a change in how Wildflowers is distributed to members through regular mail, email and on the website. Proposed changes would honor the request of some members to receive the newsletter via email and would also reduce expenses.

Changes in the board of directors include: Tom Small appointed to fill out the term of his wife Nancy and Kathy Prelesnik to complete the term of Suzie Knoll. Jean Weirich, Susan Baldyga-Grubb, and Maryann Whitman, were re-elected. Robert Krueger assumes the post of president. WAM will join forces with the Red Cedar Chapter of Wild Ones at the Lansing Home and Garden Show March 18th thru the 21st.
~ BUSINESSES & ORGANIZATIONS ~

We thank these businesses and organizations for supporting WAM with their business level membership. Business membership does not imply WAMendorsement of an individual business.

American Roots
Trish Hacker-Hennig
1958 Hidden Lake Trail
Ortonville, MI 48462
Ph. 248-627-8525
Email: americanrootsnat@aol.com

Ann Arbor Parks, NAP Division
Dave Bowman
1831 Traver Rd.
Ann Arbor, MI 48105
Ph. 734-996-3266
dborneman@ci.ann-arbor.mich.us

Better Finds
Lynnette Fouch-Bugenske
2749 Schemm St.
Saginaw, MI 48602
Ph. 989-980-6228
Email: mwildflowers@charter.net

C. Raker & Sons, Inc.
Drew Lathin
10371 Rainey Road
Litchfield, MI 49252
Ph. 517-542-4547
Email: drewlathin@raker.com
www.raker.com

David Borneman LLC
123 Mixtwood St.
Ann Arbor, MI 48103
Ph. 734-994-3475
Email: davidborneman@yahoo.com
www.restoringnaturewithfire.com

Designs by Nature
Vern Stevens
9874 Chadwick Rd.
Laingsburg, MI 48848
Ph. 517-651-6502
Email: designsbynature@hotmail.com

Edison Environmental Science Academy
Julia Kirkwood
924 Russell St.
Kalamazoo, MI 49001
Ph. 269-337-0550
Email: kirkpap@yahoo.com

Flint River Wild Ones
Terry Geir
105-1/2 Main Street
Flushing, MI 48433
Ph. 810-691-5945
Email: gill57@aol.com

Four Season Nursery
Brian Zimmerman
434 Monroe Street
Traverse City, MI 49684
Ph. 231-929-7400
www.fourseasonnursery.biz

Geum Services, Inc.
Steve Allen
P.O. Box 035
Richland, MI 49083
Ph. 269-370-0150
SteveA@prairiesmoke.com

Good Earth Landscape & Interior Design
Michael A. Saint
6126 Snowapple
Clarkston, MI 48346
Ph. 248-620-7188
michaelsaint@goodearthlandscapepc.com
www.goodearthlandscapepc.com

Hidden Savanna Nursery
Chad Hughson
18 N. Van Kal
Kalamazoo, MI 49009
Ph. 269-352-3876
Email: info@hiddensavanna.com
www.hiddensavanna.com

Huron-Manistee National Forest
Pat Ruta-McGhan
Box D, 650 North Michigan Ave.
Baldwin, MI 49304
Ph. 231-745-4631
Email: pruta@fs.fed.us

JF New & Associates
Dave Nicholson
11181 Marwill Ave.
West Olive, MI 49460
Ph. 616-847-1680
Email: dnicolson@jfnew.com
www.jfnew.com

Mary Ann’s Michigan Trees & Shrubs
Mary Ann Menck
28092 M-40 Hwy.
Portland, MI 48875
Ph. 517 647-6010
Email: wildtype@msu.edu
www.maryannstrees.com

Mott Comm. College Gardening Association
Rebecca Gale-Gonzalez
1401 East Court St.
Flint, MI 48503
Ph. 810-762-0455
Email: Rebecca.gale@mcc.edu

Michigan Wildflower Farm
Esther Durnwald
11770 Cutler Rd.
Portland, MI 48875
Ph. 517-647-6010
Email: wildflowers@voyager.net
www.michiganwildflowerfarm.com

Native Connections
Jerry Stewart
17080 Hoshe1 Rd.
Traverse City, MI 49093
Ph. 269-580-4765
Email: jerry/nativeconnections.net
www.nativeconnections.net

Michigan Nature Association
Natalie Kent
326 E. Grand River Ave.
Williamston, MI 48895
Ph. 517-655-5655

Missaukee Conservation District
Sherry Blaszak
6180 W. Sanborn Rd.
Lake City, MI 49651
Ph. 231-839-7193
sherry.blaszak@macd.org
www.missaukeeced.org

Oakland Wildflower Farm
Ruth Vrbensky & Richard Dobies
520 North Hurd Rd.
Ortonville, MI 48462
Ph. 248-969-6904
Email: oaklandwildflowerfarm@gmail.com
www.oaklandwildflowerfarm.com

R. Vix Kennedy, Inc.
Robert Kennedy
mdrkvi@ismi.net

Sandhill Farm
Cheryl S. Tolley
11250 10 Mile Rd.
Rockford, MI 49341
Ph. 616-691-8214
Email: cherylvt@isery.net

Saving Birds Thru Habitat
Kaye Charter
P.O. Box 288
Omena, MI 49674-0288
Ph. 231-271-3738
info@savingbirds.org
www.savingbirds.org

Spence Restoration Nursery
Doug Spence
2220 E. Fusion Rd.
Muncie, IN 47302
Ph. 765-282-7154
Email: kevin@spencenursery.com
www.spencenursery.com

Wetlands Nursery
Jewel Richardson
P.O. Box 14553
Saginaw, MI 48601
Ph. 989-752-3492
Email: jewel-richardson@peoplepc.com

Wildtype
Bill Schneider
900 N. Every Rd.
Mason, MI 48854
Ph. 517-244-1140
Email: wildtype@msu.edu
www.wildtyeplants.com

The richness I achieve comes from Nature, the source of my inspiration.

Claude Monet
Spring 2010 • Volume 15, Number 2

Your WAM membership expires on the date above your name. This is the only notice you will receive. IF IT IS TIME, PLEASE RENEW.

Wildflower Association of Michigan
A nonprofit organization founded in 1986, Lansing, MI

Membership Form

_____ New

_____ Renew

Category:
Household $ 15.00 _____
Business or Organization 60.00 _____
Life Member (household) 400.00 _____

Name _____________________________________
Address___________________________________
City ______________________________________
State ________________________ Zip__________
E-mail ____________________________________
Phone (day)_______________(eve)_____________

Would you prefer to receive the newsletter by email?
_____ Yes _____ No

Please make check or money order payable to WAM
And mail with this form to:

Wildflower Association of Michigan
c/o Jean Weirich, Treasurer
3947 E. St. Joseph • Grand Ledge, MI 48837
jeanweirich@gmail.com

Dawn Vezina and friend
Things got a little “batty” at the conference.

Photo by Kathy Lund-Johnson